References

1. Max Roser, E. O.-O. & Ritchie, H. Life expectancy. Our World in Data (2020).

2. Ritchie, H. & Roser, M. Causes of death. Our World in Data (2020).

3. Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: Population based cohort study. BMJ 364, (2019).

4. Liao, L., Allen, L. A. & Whellan, D. J. Economic burden of heart failure in the elderly. PharmacoEconomics 26, 447–462 (2008).

5. Cook, C., Cole, G., Asaria, P., Jabbour, R. & Francis, D. P. The annual global economic burden of heart failure. International Journal of Cardiology 171, 368–376 (2014).

6. Lesyuk, W., Kriza, C. & Kolominsky-Rabas, P. Cost-of-illness studies in heart failure: A systematic review 20042016. BMC Cardiovascular Disorders 18, 74 (2018).

7. Trivedi, J. R. et al. (574) - Risk Factors of Waiting List Mortality for Patients Awaiting Heart Transplant. The Journal of Heart and Lung Transplantation 35, S214 (2016).

8. Eurotransplant - Statistics.

9. Metra, M. & Teerlink, J. R. Heart failure. The Lancet 390, 1981–1995 (2017).

10. Bergmann, O. et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell 161, 1566–1575 (2015).

11. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 282, 1145–1147 (1998).

12. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

13. Burridge, P. W., Keller, G., Gold, J. D. & Wu, J. C. Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10, 16–28 (2012).

14. Nguyen, P. K., Neofytou, E., Rhee, J.-W. & Wu, J. C. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. JAMA cardiology 1, 953–962 (2016).

15. Inagawa, K. & Ieda, M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. Journal of Cardiovascular Translational Research 6, 37–45 (2013).

16. Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

17. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine 11, 367–368 (2005).

18. Sekine, H. et al. Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Engineering. Part A 17, 2973–2980 (2011).

19. Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Science Translational Medicine 8, 363ra148 (2016).

20. Yang, T. et al. Cardiac engraftment of genetically-selected parthenogenetic stem cell-derived cardiomyocytes. PloS One 10, e0131511 (2015).

21. Zimmermann, W.-H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine 12, 452–458 (2006).

22. Liu, Y.-W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology 36, 597–605 (2018).

23. Neofytou, E., O’Brien, C. G., Couture, L. A. & Wu, J. C. Hurdles to clinical translation of human induced pluripotent stem cells. The Journal of Clinical Investigation 125, 2551–2557 (2015).

24. Sayed, N., Liu, C. & Wu, J. C. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. Journal of the American College of Cardiology 67, 2161–2176 (2016).

25. Martin, U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Frontiers in Medicine 4, (2017).

26. Taylor, C. J. et al. Banking on human embryonic stem cells: Estimating the number of donor cell lines needed for HLA matching. The Lancet 366, 2019–2025 (2005).

27. Nakatsuji, N., Nakajima, F. & Tokunaga, K. HLA-haplotype banking and iPS cells. Nature Biotechnology 26, 739–740 (2008).

28. Bogomiakova, M. E., Eremeev, A. V. & Lagarkova, M. A. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? Molecular Biology 53, 638–652 (2019).

29. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proceedings of the National Academy of Sciences 116, 10441–10446 (2019).

30. Tiburcy, M. et al. Defined Engineered Human Myocardium with Advanced Maturation for Applications in Heart Failure Modelling and Repair. Circulation 135, 1832–1847 (2017).

31. 2006, E. EMEA/chmp 2006. Guideline on human cell-based medicinal products. EMEA/chmp/410869/2006. (2006).

32. CD-P-TO. Guideline to the quality and safety of tissues and cells for human applications. European Committee on Organ Transplantation,EDQM (2017).

33. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nature reviews. Genetics 10, 57–63 (2009).

34. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biology 17, 13 (2016).

35. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6, 377–382 (2009).

36. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

37. Asp, M. et al. Spatial detection of fetal marker genes expressed at low level in adult human heart tissue. Scientific Reports 7, (2017).

38. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nature Reviews. Genetics 16, 133–145 (2015).

39. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nature Protocols 13, 599–604 (2018).

40. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biology 18, 220 (2017).

41. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology 17, 218 (2016).

42. Kang, K. et al. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. PLOS Computational Biology 15, e1007510 (2019).

43. Newman, A. M. & Alizadeh, A. A. High-throughput genomic profiling of tumor-infiltrating leukocytes. Current Opinion in Immunology 41, 77–84 (2016).

44. Quon, G. et al. Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Medicine 5, 29 (2013).

45. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife (2017) doi:10.7554/eLife.26476.

46. Shen-Orr, S. S. & Gaujoux, R. Computational deconvolution: Extracting cell type-specific information from heterogeneous samples. Current Opinion in Immunology 25, 571–578 (2013).

47. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 37, 773–782 (2019).

48. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods in molecular biology (Clifton, N.J.) 1711, 243–259 (2018).

49. Hudson, N. J., Dalrymple, B. P. & Reverter, A. Beyond differential expression: The quest for causal mutations and effector molecules. BMC Genomics 13, 356 (2012).

50. Witteveen, E. et al. Increased Early Systemic Inflammation in ICU-Acquired Weakness; A Prospective Observational Cohort Study*. Critical Care Medicine 45, 972–979 (2017).

51. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nature Communications 11, 1–14 (2020).

52. Han, X. et al. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biology 19, 47 (2018).

53. McCracken, I. et al. Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. Eur Heart J (2019) doi:10.1093/eurheartj/ehz351.

54. Müller, G. A., Tarasov, K. V., Gundry, R. L. & Boheler, K. R. Human ESC/iPSC-based ‘omics’ and bioinformatics for translational research. Drug Discovery Today: Disease Models 9, e161–e170 (2012).

55. Wesolowska-Andersen, A. et al. Analysis of Differentiation Protocols Defines a Common Pancreatic Progenitor Molecular Signature and Guides Refinement of Endocrine Differentiation. Stem Cell Reports 14, 138–153 (2020).

56. Wu, H. et al. Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

57. Freedman, B. S. Better Being Single? Omics Improves Kidney Organoids. Nephron 141, 128–132 (2019).

58. Friedman, C. E. et al. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell 23, 586–598.e8 (2018).

59. Kuppusamy, K. T. et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America 112, E2785–2794 (2015).

60. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America 114, E8372–E8381 (2017).

61. Pavlovic, B. J., Blake, L. E., Roux, J., Chavarria, C. & Gilad, Y. A Comparative Assessment of Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. Scientific Reports 8, 15312 (2018).

62. Pervolaraki, E., Dachtler, J., Anderson, R. A. & Holden, A. V. The developmental transcriptome of the human heart. Scientific Reports 8, (2018).

63. Yan, L. et al. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver. The Journal of Biological Chemistry 291, 4386–4398 (2016).

64. Sangiovanni, M., Granata, I., Thind, A. S. & Guarracino, M. R. From trash to treasure: Detecting unexpected contamination in unmapped NGS data. BMC Bioinformatics 20, 168 (2019).

65. Schaffer, J. N. & Pearson, M. M. Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum 3, (2015).

66. Drzewiecka, D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. Microbial Ecology 72, 741–758 (2016).

67. Grandi, N. & Tramontano, E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Frontiers in Immunology 9, (2018).

68. Küry, P. et al. Human Endogenous Retroviruses in Neurological Diseases. Trends in Molecular Medicine 24, 379–394 (2018).

69. Nelson, P. N. et al. Demystified . . . Human endogenous retroviruses. Molecular Pathology 56, 11–18 (2003).

70. Strong, M. J. et al. Microbial Contamination in Next Generation Sequencing: Implications for Sequence-Based Analysis of Clinical Samples. PLoS Pathogens 10, (2014).

71. K’eki, Z., Gr’ebner, K., Bohus, V., M’arialigeti, K. & T’oth, E. M. Application of special oligotrophic media for cultivation of bacterial communities originated from ultrapure water. Acta Microbiologica Et Immunologica Hungarica 60, 345–357 (2013).

72. Kulakov, L. A., McAlister, M. B., Ogden, K. L., Larkin, M. J. & O’Hanlon, J. F. Analysis of bacteria contaminating ultrapure water in industrial systems. Applied and Environmental Microbiology 68, 1548–1555 (2002).

73. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12, 87 (2014).

74. Bengoechea, J. A. & Sa Pessoa, J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiology Reviews 43, 123–144 (2019).

75. Escobar, A., Rodas, P. I. & Acuña-Castillo, C. MacrophageNeisseria gonorrhoeae Interactions: A Better Understanding of Pathogen Mechanisms of Immunomodulation. Frontiers in Immunology 9, (2018).

76. Park, S.-J. et al. A systematic sequencing-based approach for microbial contaminant detection and functional inference. BMC Biology 17, 72 (2019).

77. Madeira, A., Camps, M., Zorzano, A., Moura, T. F. & Soveral, G. Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes. PLOS ONE 8, e83442 (2013).

78. Nordquist, E., LaHaye, S., Nagel, C. & Lincoln, J. Postnatal and Adult Aortic Heart Valves Have Distinctive Transcriptional Profiles Associated With Valve Tissue Growth and Maintenance Respectively. Frontiers in Cardiovascular Medicine 5, (2018).

79. Tiburcy Malte et al. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation 135, 1832–1847 (2017).

80. Cai Wenxuan et al. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem CellDerived Cardiomyocytes. Circulation Research 125, 936–953 (2019).

81. Fougerousse, F. et al. Calpain3 expression during human cardiogenesis. Neuromuscular disorders: NMD 10, 251–256 (2000).

82. Liu Qing et al. Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circulation Research 121, 376–391 (2017).

83. Ng, A. et al. Loss of glypican-3 Function Causes Growth Factor-dependent Defects in Cardiac and Coronary Vascular Development. Developmental biology 335, 208–215 (2009).

84. Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Research 29, 506–519 (2019).

85. Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A. & Reggiani, C. Developmental myosins: Expression patterns and functional significance. Skeletal Muscle 5, 22 (2015).

86. Wang, T. Y. et al. Human cardiac myosin light chain 4 (MYL4) mosaic expression patterns vary by sex. Scientific Reports 9, 1–7 (2019).

87. Sheng, J.-J. & Jin, J.-P. TNNI1, TNNI2 and TNNI3: Evolution, Regulation, and Protein Structure-Function Relationships. Gene 576, 385–394 (2016).

88. Machiraju, P. & Greenway, S. C. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. World Journal of Stem Cells 11, 33–43 (2019).